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Abstract

This thesis reviews the method of [1] for computing the full colour ordered N-point open
superstring amplitude using the Pure Spinor formalism. We introduce relevant elements of
super Yang-Mills theory and examine the basics of the Pure Spinor formalism, with a focus
on tools for amplitude computation. We then define a series of objects with increasingly
useful BRST transformation properties, which greatly simplify the calculations, and show
how these properties can be determined using a diagrammatic method. Finally, we use
the explicit four- and five-point amplitude computations as stepping stones to compute
the general N-point amplitude, which factors into a set of kinematic integrals multiplying
SYM subamplitudes.



Layman’s Summary

In particle physics, one of the most common and important questions asked is: “What
will happen if a given set of particles interacts?”. Typically there is no single answer
to this question. Due to the stochastic nature of the quantum world, there are often
multiple possible outcomes which may occur with some probability. These probabilities
are further dependent on the energies and momenta of the incoming particles. All of
this information is encoded in the so-called probability amplitude for that particular
interaction. Experimentally, we typically examine the possible outcomes using particle
accelerators, but we can also predict them using physical theories and models.

The current standard model of particle physics has been wildly successful in matching
the predicted amplitudes to observed experimental results. However, the standard model
is incomplete. In particular, it does not seem capable of taking into account the force of
gravity. String theory is the most widely accepted solution to this problem of quantum
gravity. In string theory, different particles are considered to be different vibrations of
more fundamental one-dimensional strings, which may be open lines or closed loops. This
description leads us to ask about string interactions, and again we find ourselves concerned
with amplitudes.

Amplitudes are typically computed using perturbation theory, where increasingly com-
plex processes contribute with decreasing importance to the overall amplitude. In this
thesis, we will concern ourselves with the leading order (“tree level”) amplitudes, which
contribute most significantly and are also the easiest to calculate. Despite being the sim-
plest level, calculating tree-level amplitudes has nonetheless posed significant difficulties
for string theorists interested in increasingly large numbers of incoming and/or outgoing
strings, which can be collectively referred to as “points”.

String theory can be mathematically phrased in several different ways; these phrasings
are referred to as “formalisms”. Ideally, different formalisms predict the same physical
outcomes, but they lend themselves to simplifying different types of calculations. The
recently developed Pure Spinor formalism is particularly effective for calculating proba-
bility amplitudes. In this thesis, we will review the development of useful objects and
tools within the formalism. Combined with tools and results from other areas of physics,
these developments will culminate in our calculation of the probability amplitude for an
interaction involving an arbitrary number (NN) of open strings.
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Popularvetenskaplig Sammanfattning

Inom partikelfysiken ar en av de vanligaste och viktigaste fragorna: “Vad hénder om
en given mangd partiklar interagerar med varandra?”. I allménhet finns det inte nagot
enkelt svar pa denna fraga. Pa grund av den kvantmekaniska varldens stokastiska beteende
finns det ofta flera slutresultat som kan intraffa med olika sannolikheter. Dessa sanno-
likheter &r i sin tur beroende pa de inkommande partiklarnas energi och rorelseméangd.
All denna information finns kodad i den sa kallade sannolikhetsamplituden for en viss
interaktion. Experimentellt gar det vanligtvis att studera de mojliga slutprodukterna
genom att anvanda partikelacceleratorer, men det ar ocksa mojlig att forutse dem med
hjalp av fysikaliska teorier och modeller.

Den nuvarande standardmodellen for partikelfysik har varit oerhort framgangsrik med
att para ihop forutsedda amplituder med experimentella observationer. Dock ar stan-
dardmodellen for néarvarande inte komplett, da den inte tar hénsyn till gravitationen.
Den mest accepterade losningen till problemet med kvantgravitation ar strangteori. Inom
strangteorin ses partiklar som olika vibrationer av mer fundamentala, endimensionella
strangar, som kan vara bade 6ppna linjer eller slutna cirklar. Aven inom stringteorin ar
fragan om interaktioner viktig, och da ar amplituder &nnu en gang relevanta.

Vanligtvis berdknas amplituder med hjalp av storningsteori, dar mer komplexa foreteelser
har en mindre inverkan pa den totala amplituden. Denna uppsats kommer att befatta
sig med ledande amplitudtermer (som pa engelska kallas “Tree-level”), det vill séga de
termer som bidrar mest till den totala amplituden och ar enklast att berakna. Trots deras
relativa enkelhet har sadana amplituder visat sig vara besvérliga for strangteoretiker som
ar intresserade av interaktioner med ett hogt antal strangar, dar varje interaktion kallas
for en “punkt”.

Strangteorin har flera matematiska uppstallningar, sa kallade formalismer. I princip
ska olika formalismer forutse samma fysikaliska fenomen, men vara lampade for olika
typer av berakningar. Den nyligen utvecklade “Pure Spinor”’-formalismen ar sarskilt
valanpassad for berakningar av sannolikhetsamplituder. I den hér uppsatsen undersoks
utvecklingen av anvandbara objekt och verktyg inom “Pure Spinor”- formalismen. Till-
sammans med resultat fran andra delar av fysiken kommer denna uppsats att kulminera
i en berakning av sannolikhetsamplituden for en interaktion mellan ett godtyckligt antal
(N) 6ppna striangar.
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Notation and Conventions

Here we will collect notation and conventions to be used throughout the thesis. These
notations will often be used without introduction, and conversely any new notations, if
not introduced explicitly in the text, will appear in this section.

We will denote spacetime vector indices by m,n,...=0,...,9 and spacetime spinor
indices by «, 3,...=1,...,16. We will typically reserve i, j,k,... to use as labels, not
indices, meaning they imply no transformation properties unless explicitly stated. When
symmetrizing or antisymmetrizing N indices, we define the brackets () and [] respectively
to contain an overall factor of 1/N!, such that e.g. A" = (AmA" — A" A™) /2.

To avoid clutter, we will sometimes suppress both spinor and vector indices when
they are contracted. Spinor index suppression will be denoted by round brackets, so e.g.
A28 Bs = (AymB), and A,v2P = (Ay,,)?. Vector index contractions will be denoted as
a dot product: A™B,, = A- B. Where unambiguous, we may also use this notation for
higher rank tensors, e.g. C"™"D,,, = C - D.

When taking derivatives of superfields, we will use the convention 9,, = k,, (not ik,
as usual). We will denote the 16 x 16 Pauli matrices as Yap- Higher order antisymmetrized
products of these matrices will be given by 73" "™ = (™42 .. ™)

When computing operator produce expansions (OPEs), we will denote “equal up to
regular terms” by an arrow (—). For OPE singularities we will use the shorthand z;; =
z;—z;. Where potentially ambiguous, we denote differentiation variables using 0/0z; = 0;.
If the limit for an OPE is not explicitly stated, we will assume that the object written
to the right in the product approaches the object to the left: “V(z1)U(z2) — ...” means
“lim,, ., V(21)U(2z2) — ...".

Where o does not explicitly appear, we will use the convention o/ = 1/2. It can
always be restored by dimensional analysis if needed. We will denote sums of momenta
by k2P = k! + k* + ... + kP. We will make use of dimensionless Mandelstam invariants
s12.p = o/ (K'*P)? = o/ (k' + ky+- - -+ kP)%. In particular, for massless particles and using
o =1/2, 555 =k"- k.

[m1m2 .

vi



1 Introduction

In every modern theory of microscopic physics — from quantum mechanics, to quantum
field theory, to string theory — the outcomes of experiments and interactions can only
be stated probabilistically. The probability for one set of particles or strings coming
together, interacting, and producing a new particular set may depend on the incoming
masses, energies, and other variables. The functions of these variables which predict the
probability of a given interaction are known as amplitudes.

In both QFT and string theory, amplitudes are typically computed using perturbation
theory. Here the simplest (“tree-level”) processes, where all involved momenta are fixed,
contribute the most significantly, and more complex versions of the interaction can offer
corrections. In QFT, these higher order corrections contain loops, whereas in string
theory (our main focus) the associated worldsheet contains holes and/or handles. Despite
being the simplest level, calculating tree-level amplitudes has nonetheless posed significant
difficulties for string theorists interested in increasingly large numbers of incoming and/or
outgoing strings, i.e. amplitudes at a large number of points.

In order to be consistent theories with no predicted tachyons, string theories are re-
quired to be supersymmetric and in spacetime dimension D = 10. This means that we
have the same number of bosonic and fermionic degrees of freedom in the equations of
motion, and that the theory is invariant under a transformation that relates these degrees
of freedom. There have been several equivalent descriptions of superstring theories devel-
oped over the years. These different formalisms of superstring theory lend themselves to
simplifying different calculations. The Pure Spinor formalism, introduced by Berkovits
in 2000 [2], has proven itself to be particularly effective for calculating superstring am-
plitudes. In fact, and rather remarkably, the general amplitude at any number of points
was computed in 2011 by Mafra, Schlotterer, Stieberger in [1], using this formalism for
open strings. The calculation of the N-point amplitude was the culmination of research
by Mafra beginning with the 4-point amplitude in the mid 2000’s [3, 4]. The 5-point
case soon followed [5]. The 6-point case was analysed in conjunction with Schlotterer,
Stieberger et al. in [6]. The full N-point case was presented in [1] and subjected to
in-depth analysis in [7].

In this thesis, we will review this computation from [1] of the general tree-level N-
point amplitude. We will assume familiarity with concepts from quantum field theory,
supersymmetry, conformal field theory, and string theory, although important results will
be stated explicitly as needed. The interested reader may refer to e.g. [8, 9] for an overview
of (super)string theory and relevant aspects of conformal field theory, and the basics of



QFT are covered in [10].

We will begin by reviewing the field equations and symmetries of supersymmetric
Yang-Mills theory in D = 10. Although SYM is not our primary focus, it will turn out to
be an invaluable tool for our calculations. In chapter 3 we will introduce the Pure Spinor
formalism by first considering pure spinors in their own right, and then exploring how they
are used to construct a consistent superstring theory. We will examine the components of
the formalism which are most crucial to our computation, namely the operator product
expansions (OPEs) between the various worldsheet fields, and the tree-level amplitude
prescription. In chapter 4, we will use the pure spinor formalism to define a series of
objects which will prove useful in simplifying our eventual amplitude calculation and in
making relevant symmetries more obvious. Finally, in chapter 5, we will introduce some
integral manipulation techniques and begin our amplitude calculations. Loosely following
the historical development of amplitudes in the Pure Spinor formalism, we will use the
explicit 4- and 5-point amplitude computations as stepping stones to computing the full
N-point tree-level open superstring amplitude.



2 Elements of Supersymmetric
Yang-Mills Theory

We will be making frequent use of N' = 1, D = 10 supersymmetric Yang-Mills theory
(SYM). In this chapter we will review some essential elements of SYM, drawing from
similar overviews in [1, 3, 11, 12].

SYM fields are fields on a superspace, a manifold which has both bosonic coordinates X
and fermionic (Grassman) coordinates 6. Such fields are often referred to as ‘superfields’.
We will be considering the D = 10 case, with 10 bosonic coordinates X™, m = 0,...,9,
and 16 fermionic coordinates 0%, o = 1,...,16, which match the D = 10 Lorentz vector
and spinor. The fundamental fields are the gauge field A,, and its superpartner A,. We
use them to define the supersymmetric and covariant derivatives

Do =0a + %(we)aam (2.1a)
Vo= Do+ {Aa,} (2.1b)
Von = O + [Apm, ). (2.1c)

The gauge superfields transform under a gauge transformation € as
0A,, = V.,,Q, 0As = Vo9, (2.2)

which leaves invariant the field strengths

Fap ={Va; Vs} = 705Vm (2.3a)
Jfozm = [vaa vm] = (’}/mW)oa (23b)
Fon = [V, Vo] = O Ay — 00 A + [Amy Anl, (2.3¢)

where we defined a new superfield W,. The superfields appear in the Lagrangian
1 .
Loyy = tr (_Z]:mn]_—-mn + %Aa(rym)aﬁvm/[ﬁ) , (2.4)

where the trace is over the Lie algebra of the gauge group. This Lagrangian is supersym-
metric under the SUSY transformations

§Am = () Auy, A4 = —%(’ymnf)a]:mn (2.5)



for some fermionic parameter £¢. The superfields obey the linearized SYM field equations

D(QA@) = ’}/ZLﬁAm (26&)
DoAy = (4 ) + o A (2.6b)
Dafmn = 2k[m<’Yn]W)a (2.6C)
1
DaW? = 2(4"™)o Fonn, (2.6d)
which as explained in [13] are equivalent to
V?nipqr<DaAB + igAaAﬁ) =0 (27)

(see [3] for an explicit proof). It is pointed out in [5], that the equations of motion (2.6)
imply that

K™ (ymW)a = 0, (2.8)
which will be useful for later computations.

We fix the gauge such that A, = 0. Then using the normalization of [14], we can
expand the superfields in powers of 6 as

Ao = 3an(0"0)a = 5(Em0) (1" 0)a = 35 Fun(0)a(07"70) + .. (2.92)

A =t (€1n8) — (070170 Fp + 2 (6316) (0p8746) + . (2.90)
W = € — L) Fo + (0 (0306) + 2 (70 (011700 Fo

(2.9¢)

Fon = Fon — 20mf) + i(ey[mw@an]p’pq + %a[m(eyn]pqe)(@qe)ap o (2.94)

where a,,(X) = ene®¥, £4(X) = x*e*¥ are polarizations and F,, = 20}may). Note that
we have factors of e#X and not e”*X to conform to our convention of 9,, = k,,, when acting
on the SYM fields. We recover the other, more common convention simply by sending
k — k.

In SYM, N-point amplitudes Ayy can be decomposed into so-called primitive or
colour-ordered subamplitudes Ayy;. At tree level, the decomposition takes the form

Aym(L,2,.. N) =gV 3" e (TT™ - T™) Ay (1,2,..., N), (2.10)

5(1,2,...N)

where ¢ is the coupling constant, the T% are the generators of the colour group, and
a(1,2,...,N) is the set of all non-cyclic permutations of 1,2,..., N. Note that this is
equivalent to summing over all permutations of 2,3,..., N (i.e. leaving 1 fixed) due to
the cyclicity of the trace.

As an aside, the use of YM and not SYM in the labelling of the (sub)amplitudes is not
an oversight. Although we are in the supersymmetric case, Lorentz invariance requires

4



fermions to couple to vectors only through vertices of the form of Fig. 2.1. It is easy to
convince one’s self that a diagram containing only gluonic legs can only contain this vertex
as part of a loop, so they do not appear at tree level. This means that for our purposes,
results for the YM (sub)amplitudes also hold for the gluonic SYM (sub)amplitudes.

o YAy

Figure 2.1: The form of the fermion-vector interaction vertex prevents such inter-
actions from appearing at tree-level in gluonic amplitudes.

Now, from the cyclicity of the trace in the decomposition (2.10), we see that the total
amplitude is only affected by the part of the subamplitude obeying

Avai(L,2, ..., N) = Ayw(2,..., N, 1), (2.11)

and as pointed out in [12] the Ay, are known to obey this cyclic symmetry property. They
also obey other symmetry relations in the indices, in particular the reflection property

Ava(1,2,...,N) = (=1)N Aym(N, ..., 2,1) (2.12)
and the subcyclic property

> Avm(1,0(2,3,...,N)) =0, (2.13)

where the sum is over all cyclic permutations o(2,3,...,N) of 2,3,... N.



3 The Pure Spinor Formalism

The Pure Spinor (PS) formalism was proposed by Berkovits [2] as a method for quantizing
the superstring while preserving both manifest super-Poincaré invariance and supersym-
metry. In this chapter, we will survey the most important aspects of the PS formalism
with respect to our overall goal of computing amplitudes. We will begin by considering
pure spinors in their own right, and solving the pure spinor equation. We will then use
these objects to write an action, and find the resulting OPEs and relevant composite op-
erators. Finally, we will detail the massless vertex operators and the tree-level amplitude
prescription of the formalism.

3.1 Pure Spinors

As the name suggests, the heart of the Pure Spinor formalism is the pure spinor, A%,
which are bosonic Lorentz spinors obeying the condition

AN = 0. (3.1)

where 7,5 are the 16 X 16 symmetric Pauli matrices. We will be concerning ourselves with
the case D =10 (som =0,...,9 and o, = 1,...,16). We would like to develop some
intuition for the pure spinor by solving this constraint. If we follow [9, 11] and define

1 1
+ 0 1 + 2(a—1) | ;. 2a—1 _
= —(v" +7v), = +1 , a=2,...,5, 3.2
then the pure spinor constraint breaks into (AMy=\) =0, a = 1,...,5. The new matrices
obey
(e =0w,  {7% =0 (33)

Now, from these relations we see that (y7)? = 0, meaning we can find a spinor A
such that

Ta A =0 Va, (3.4)
since the various v~ all anticommute. Now we extend this notation by defining AT~77~ =
AT AT = Af AT , etc. Note that we always order the v with lower

indices to the right. The +, will annihilate a spinor if the a'" label £ matches its own, and
will flip the sign of the label if it does not (potentially with a sign change from anticom-
mutation to preserve the 7 matrix ordering). Anti-Weyl spinors are those with an odd
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number of + labels, whereas an even number (or 0) are Weyl spinors, i.e. multiplication
by a v, sends Weyl — anti-Weyl and vice versa.

Let us focus on the Weyl spinors. The general Weyl spinor will be some combination
of A with 0, 2, or 4 4 labels. We define these basis elements to be

_____ — 1 aCe
A =\ ’ Ty 7(1)\ = Aab7 4 bed /y:’Yd /}/c Ty >\ )\ (35)

where A~ is normalized such that A= A\TT*++ = 1. Note that )\, is antisymmetric, meaning
that the general Weyl spinor has 1 + 10 + 5 = 16 degrees of freedom, as expected in
D = 10. These degrees of freedom actually correspond to breaking the (Wick rotated)
SO(10) symmetry down into U(5) = U(1) x SU(5), as pointed out by Berkovits in |2,
13]. The three objects (3.5) transform in the 15/2, 1012, and 5_5/2 representations of
SU(5)u(1) respectively.

Now We solve the PS constraints (Ay=\) = 0. Write the general pure spinor as

A= U+ u®Agp + U\ (3.6)

As pointed out in [11] the only non-zero contractions of our U(5) variables available are
AN =68 (3.7a)

AabVa Ade = Eabede (3.7b)

Ay Acd = 20704y, (3.7¢)

so the + equation becomes
(MFA) = (U AT+ uP N + ua D)y (u A+ u s + ugh?)
= 2u”up(A YA + P u® Ny Nae)

0 = 2u" Uy + Eapedett®ue, (3.8)
so we find
Uy = 1€bdubcude u” #0 (3.9)
a 2u aobcae . .

Fortunately this also solves the — equation, which reduces to
0= (Mg A) = (U A"+ u"Ne + gy, (U A"+ u Ao + ugh?) = 2u,u™. (3.10)

So we find that the pure spinor is parametrized by a number u~ and an antisymmetric
matrix u® for a total of 1+ 10 = 11 independent degrees of freedom. This result can also
be arrived at using a creation-operator description as in [3]. Note that in the literature
(e.g. [3, 13]) sometimes u~ # 0 is parametrized as u~ = e® for some number s.

3.2 PS Action and OPEs

The full action for the type IIB superstring in the PS formalism, using the normalization
of [1], is

Stan = —/d2 ( OX™O X, + Dol — wWaOA + Padf™ — waav) : (3.11)

7



Here we have bosonic worldsheet fields X™, A\, w,, and &,, and fermionic fields 0%, p,,
and pg.

Since it is our goal to consider only open string amplitudes we can neglect the right-
movers and just focus on the left-moving portion

1

T or

1 _ _ _
S d?z (EaXmaXm + Pa00% — waﬁ)\o‘) , (3.12)

which is supersymmetric under

m __ 1 m a _ _« _ _1 m 1 m
SXT = 5EV0), = Gpa = —5 (V0K + GOm0 s g
SN = Sw, = 0,

for a small fermionic parameter £ and bosonic transformation . It is also gauge invariant
under

dwa = A (V" N)a (3.14)

for arbitrary A,, thanks to the PS condition (3.1). Crucial to the development of the
formalism is the BRST operator

Q= 7{ A*d,, (3.15)

where . 1
da = Pa — 5(’7m9)aaXm - g(’ymg)a(e’ymae) (316)

is the Green-Schwartz (GS) constraint, which in this case is not constrained to vanish.
This action and BRST operator began in [2] as an educated guess, but Berkovits has since
presented a derivation of both the PS and the GS actions and BRST operators as different
gauges of a purely bosonic, classical action starting from superparticle considerations in
[15]. We also have the supersymmetric momentum combination

1
I =0X™ + 5(97’”80). (3.17)
The action (3.12) yields the standard free boson and bc OPEs:
o 68
X"(21) X" (22) — —?nmn In 219, Pa(21)0°(20) — Z—O‘ (3.18)
12

Using Wick’s theorem we can then compute more OPEs:

1™ (211" (22) — —<Z )2, 7" (21) X" (29) — —nZ
12 12
3.19
Vapll” 3 0 m (Y"0)a (319)
do(21)dp(z2) — — - do(21)0°(22) — P do(21)11™ (22) — PR

There is significant subtlety which comes into play regarding the ghost number current

J = wa\® (3.20)

8



and the Lorentz current, which we write as
1
M™M= N N = 5(/\77”%)), (3.21)

where ™" is the normal Lorentz current for the matter, and N™" is that of the ghosts.
As detailed in [3, 16], the key issue is that the wA CFT is constrained by the PS condition,
which makes the OPEs resulting from it non-trivial to calculate. The calculations can be
performed by breaking the symmetry down to the U(5) version of section 3.1, including
defining new fields w_, w®, and w, in the same way as the broken down A. The idea is to
use the solution to the pure spinor constraint, and choose the gauge w® = 0 using (3.14),
to write a new action for the ghosts in terms of fields composed of At and u®*. This allows
us to compute a fairly large number of U(5) OPEs, which are listed in [3]. Luckily, these
can be reassembled into the desired Lorentz covariant form. This process is laid out in
great detail in [3, 16]. In the end, we get the OPEs

mn «@ 1 ()\,}/mn)a mn 4 [m n] 6 n sn
N™(z1)A%(22) = 3 L, N™"(21) Npq(22) = Z—HN w0y — [ERE (3.22)
and \e
J(21) A\ (20) = 3.23
(BN (e2) = 323
such that A has ghost number 1. We also find the stress-energy tensor
1
T(z) = —§HmHm — da 00 + w, 0N, (3.24)

The central charge for this stress-energy tensor receives a contribution of 410 from the
X™ degrees of freedom and —32 from the fermions. We have already established that the
pure spinors have 11 degrees of freedom; they contribute +22 to the central charge for a
grand total of zero. So the theory is anomaly free as required. Finally, we also get the
action of d and II on general superfields f(X,6) containing only zero modes of 6:
dole)f(z2) = 22 ) ) 2L (3.25)

212 212

In particular, these are the two OPEs obeyed by the SYM fields.

3.3 Vertex Operators and Amplitudes

The massless vertex operators were introduced with the PS formalism in [2]. They are
V(z) = \*A, (3.26)

in unintegrated form and

1
U(z) = 00" Aq + Apll™ + doW* + SNy F™ (3.27)



in integrated form. These vertex operators have ghost numbers 1 and 0, respectively, just
like in bosonic string theory'. Here A, = A,(X,0), A,, = A,.(X,0), W* = W(X,0),
and F"™ = F"(X,0) are a set of suggestively-named superfields. We would like to
constrain these superfields such that we have the usual relations

QV =0, QU = 0V. (3.28)
Using our OPEs from section 3.2, we act with @) on U. The first term yields

Q(aeﬁ(ZQ))Aﬁ(Zg) = j{dzl %)\a(Zl)d9<21)6296(22)4/3(22)

— %dzl %)\a(zl) <32 (ﬁ) Ap(z) — 3295(z2)DaAB(Z2))

e 212 Z12

1
= j{dzl T()\Q(ZQ) + 82)\a(22)212 + ... )
X

y (Aa(zQ) —ageﬂ(ZQ)M)

2
212 212

= (OXY) Ay — A*(00°) D, Ag. (3.29)

Similarly, the following terms yield

Q(ALII™) = XTI Dy Ay + (\Y"00) A, (3.30)
QdgW?) = — (M WHIT™ — X\*dg D, WP (3.31)
1 1 1
FQNpnF™) = & Nogn X* Do F™" + 2 (Amnd) I (3.32)

Combining these terms, we get
QU = (0X*) Ay — A*(00°)(DoAg — V25 Am) + XTI (Do Ay, — (v W)a)
— \dg(DW* — i(’ymn)aﬁ}"m”) + %NmnAQ(Da}"mn). (3.33)
This is equal to
IV = 0N\ A,) = (0X*) Ay + A*(007)0gAg + X (OX™)Om A (3.34)

only if the superfields A, F, and W obey precisely the SYM field equations (2.6)! This
setup means that SYM appears very naturally in the PS formalism, allowing for the use
of results from this well-studied theory. The PS formalism has also been fruitfully applied
to derive SYM results as introduced in [17] and reviewed in e.g. [11]. Note that the N,,,
vanishes after writing N in terms of A and using the the PS relation from [2]:

("Nl A)s = — 578 (M) = 0. (3.35)

!The vertex operators of bosonic string theory are explained in detail in section 2.8 of [8]
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Similarly, QV = 0 if A, obeys the linearized SYM equations (2.7). So demanding the
usual vertex operator relations is equivalent to putting the coefficient superfields on the
SYM mass shell. In all further calculations we will thus assume that any SYM fields
appear on-shell, unless explicitly stated otherwise. As an aside, it is worth noting for ease
of OPE computations that we can rewrite dV as

OV = (OA™)Aq + Tk V + 00° Dy V. (3.36)

In analogy to bosonic string theory, colour ordered tree-level amplitudes at N points
are given by

A(1,2,...,N)
= (VO e [antre) [aar ) [ eo)),
(3.37)
where we integrate over the region z; = 0 < 25 < -+ < 2y o < 2zy_1 = 1. Here we

have used the SL(2, R) invariance of the open worldsheet to fix (21, zx-1, 2n5) = (0, 1, 00).
The correlator brackets ( ) are defined to be non-zero only for, and normalized by, the
combination of zero modes

((M™0) (X" 0) (AM"0) (0Ymnpt)) = 1. (3.38)

This combination is easily seen to be BRST closed using our OPEs and the pure spinor
condition, so BRST exact terms decouple from physical states (see e.g. [16] for an in-depth
discussion of the decoupling). Furthermore, it was proven in [2] that despite the explicit
f dependence, this measure is both supersymmetric and gauge invariant. That this is the
correct object to absorb the zero modes was an ansatz made in analogy to bosonic string
theory, where the zero mode prescription is given by (cdcd?c) = 1, i.e. we normalize using
a vertex operator at ghost number 4+3. The authors of [1] point out that the combination
(3.38) is the unique element in the cohomology of @ at ghost number 3.

Note that because BRST exact terms decouple and @) acts like a differential operator,
we can use the correlator to perform “BRST integration by parts”. In particular, consider
a fermionic object T" and a bosonic object D. Since () is fermionic, its action on 7" and
D is

QD =[Q,D], QT ={Q.T}. (3.39)
Then, acting on the products DT and T'D gives

Q(TD) ={Q,TD} ={Q,T} D - T[Q, D] = (QT)D - T(@D),

QDT) = {Q.DT} = [Q.DIT + D{Q.T} = (@D)T + D(@1). ™
So, when we BRST integrate by parts, we get
(@(TD) =0 = ((QT)D) = (T(QD)) )

(QIDT)) =0 = ((QD)T) = —(D(QT)).
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4 Building Blocks: Laying a
Foundation

In this chapter we follow [1] in defining a series of objects which will aid in the eventual
computation of the N-point amplitude. We will make extensive use of several layers of
recursively defined superfields, with the aim of elucidating their BRST transformation
properties and symmetries. Their explicit computations will rely heavily on the OPEs
that we calculated in section 3.2. We will begin with a convenient definition of a set of
recursively defined, composite superfields L. We will then go through significant effort
to remove BRST trivial parts of L while still maintaining essential properties, leaving
us with the so-called BRST building blocks T'. Using combinations of these, we will
finally construct objects known as the supersymmetric Berends-Giele currents M, which
are the actual objects appearing in amplitudes. As a point of interest we also consider an
expression of super Yang-Mills subamplitudes in terms of the BG currents.

4.1 Recursive Superfields from Vertex Operators

We begin by defining the superfields L, up to BRST exact terms, by

| L |
lim V(z)U%(z) — =2, hm1 Lo p-11(21)UP(2p) —

29—21 221 Zp—Z

Zpl1

We can generalize this notation to include the single poles resulting from taking the limits
in other orders, similar to [5, 6]. To do so we use the labels of the L;jkmn... to mean that
we take the limits z; — z;, then z; — 2, then z,, — z,, etc., always involving one V' and
a series of U:

< lim lim lim V(2 U7 (2)UR () U (20) -+ — %. (4.2)
Zp—2g Ze—rZd Za—Zp ZabRdcZfg * "

Here the labels abc... must be such that after all the limits are taken, all of the vertex
operators end up converging on the same point. For example, we could have a = i, b =
f=7, c=k, and d = g = {. Then the z limits are: first ¢ — j, then k — /¢, and finally
j — (. After taking these limits in order we are left with L;jreje(2e)/2i52k0250. We will
leave further discussion of these generalized L to chapter 5, instead focusing for now on
the simpler Lai3....

12



Now, we would like to explicitly compute Lo;. Using our OPEs and the SYM equations
of motion (2.6), we get

1
V' (1)U (22) = 20 (A“AL)(00° AG + I AL + dgW? + ZF2 N™)

2 mn
1
= 0= XUIALAL = AN (DA )W — S AN L
= —VI(k' - A%) = N (VAL — Dy AW — \*ALD W
= =V (k" A?%) = AL (W"W?) + A Do (AW?)
= —VIEA%) = A, (\"W2) + Q(ATW?). (4.3)

Note the presence of the BRST exact term Q(A' - W?). Since we are taking L only up to
BRST exact terms, we drop this term and simply write

Loy = V(KM A%) — AL (" W2). (4.4)

Failure to remove this explicit term BRST-exact terms will yield a cascade of extraneous
terms as the definition is recursively applied, breaking the transformation properties we
are about to compute.

We are primarily interested in the BRST properties of these superfields, and dropping
this term does not affect the cohomology. Note that this reduced expression with no
BRST exact terms is the one that is used in the recursive definition of the higher fields.
Explicit expressions for higher orders in L and many of the following recursive superfields
are given throughout [1]. For later use, we also include the next rank of L explicitly:

Loi31 = 231 ZlLII;I L21(ZI)U3(Z3)
= — Loy (k" - A%) — (Lsy + V(K" - A%)) (k' - A?)
+ (Lgo + V2(K? - A%)) (K2 - AY) — (MW" W3) (W W2) — k2 (A - A%)) . (4.5)
Now, how does Ls; behave under the action of Q)7
QLo = fvda(—vl(kl CA%) = AL (MW?))
— VIEL A (DQ AP™) — XY (Do ALY (Y™ W2) — AL XN D, (v W) 5. (4.6)
Starting from the last term, we get

— AN Do (Y"W?)5 = —A) AN Do (Dg AP + kP AZ) = —(Al - )N N0, AL T o,)
4.7

where we used the SYM equations, that D,Dg is antisymmetric, and the PS condition.
Similarly, with the help of (3.35), we see that

—X* (Do Ay ) (A" W2) = = XN ("W + KAL) (W)
= —AALKTN (1 W) 5
= —V'E" N (DgAZ — k2, A%)
= V'L AY(D AT + VIV2(K - K2). (4.8)
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So the first term of (4.7) is cancelled. Since we are dealing with massless fields, k' - k* =
$(k' + k?)? = 515, and we are left with

QLo = s12V'V2, (4.9)
This forms the base case for the general recursive action of (), which is

QL2131..,p1 = Zli_{gl Zp1 ((QL2131...(p71)1)(Zl)Up(Zp) - L2131...(p71)1(Zl)avp(zp)) (4-10)

(no sum over p), as is easily seen from recalling that QU = 9V and noting that both @
and L are fermionic. To evaluate the second term in this expression, we use our OPEs
and (3.36) to compute that

Vi(2)0VP(z,) = (A*AL) ((OX) AL + IR VP + 06° DgV?) — —S—”f(vivp)(zi) (4.11)

Zpi

(no sum over ¢, p), and

. . . . 1 .
U7 (=)0 (2,) = (90% AL, + ALTI™ 4 AW + =N, FI)

2
x ((ON)AL + Tk VP + 00° DgV'?)
— (V) (2). (4.12)
DL
So
1
lim —231L21(2’1)8V3(Z3) = — 231(V1U2)(?V3

Z3—Z21
— —zy <—ﬁvlv3 U? - V1@U2v3>
231 231
= (513 + 823)L21V3. (413)

Finally, using the definition of the higher order superfields (4.1) one can inductively show

p—1
— i L _ p = L _ VP 4.14
Zplgil Zp1L2131...(p 1)1(21)8V (Zp) z; Sjipli2131...(p 1)1V ( )
J:
(no sum over p). Already we see kinematic factors appearing from our treatment.
In calculations to follow, our recursive fields do not exist in isolation, but in various
combinations, which may have interesting BRST behaviour. For example, since V! and
V2 anticommute,

Q(La1 + L) = s12(V'V2 4+ V2V = 0, (4.15)

so this combination is BRST closed. It turns out that it is also exact:

Lot + Lis = A ((1m W) + kL ALY AP 4 (1 45 2) = —A*Dy (AL AZ™) = —Q(A! - A2).
(4.16)
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Since this is a factor that will show up frequently, we define for convenience

Dij=Dj=A"- A% (4.17)
We can also view this as the L having an explicitly exact part by writing Loy = L1+ L21),
with L) exact.

In fact, all BRST closed combinations of L;ji. . are exact. The authors of [1] point
out that using the stress-energy tensor (3.24), the conformal weight of any Lijik...in 18
(k' + k7 + k¥ 4+ ... + k™)2. This is non-zero for massless strings N points as long as
n<N-—1.

Now, we know from bosonic string theory that for a b ghost,

{Q.0r=T, {Q,b} = Lo (4.18)

where Ly and by are the zero modes of the stress-energy tensor and the b ghost (see
chapter 4 of [8] for a review of this point). Primary operators (including our L, ;.. ) are
eigenstates of Ly with eigenvalue h, the conformal weight of the operator. Now suppose
that we have an operator ¢/ which is BRST closed. Then

hip = Loy = {Q, bo} . (4.19)
But since 1 is closed, {Q, by} ¥ = Qbyp. If h # 0 then we can invert the equation:

Y=0Q <%bo¢) : (4.20)

So if h # 0, then closedness of ¥ implies its exactness.

The Pure Spinor formalism does not have a b ghost as a fundamental field, so it is not
immediately obvious that this result applies here. However, it is possible to construct a
composite object obeying the same relations as the b ghost; this was first done by Berkovits
to aid in the calculation of multiloop Pure Spinor amplitudes in [18]. The existence of
such a field, composite or not, is sufficient to apply this result to our case, and so all
closed combinations of L;j;, . must also be exact.

We would like to spare ourselves the trouble of dealing with this and other exact
combinations which will anyway not affect physical results, so we now seek a systematic
way to eliminate this BRST exactness from our expressions.

4.2 BRST Building Blocks

It was not necessarily obvious from the first few lines of (4.3) that there would be an
explicit BRST-exact part of Ly to be removed, and this obscurity only worsens as more
recursive steps are added. As such, a procedure is designed in [1] to eliminate these parts
systematically and leave us with the so-called BRST-building blocks, 7323 ,, which allow
us to examine potential BRST closed and exact combinations more systematically.
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The idea is to construct the building blocks T3, such any exact combination of them
is explicitly zero, while still maintaining the BRST property (4.10) under the replacement
Loiz1..p1 — Ti23. p. This definition leads to symmetries in the labels of the building blocks,
which we will refer to as BRST symmetries.

We have already discovered how to construct the base case, by removing the BRST
trivial part (4.16) of Lo;. Since L9y) is exact and Loy = Ly + L21), we define

1 1
T = Loy + §QD21 = V(K" A%) = AL (W"W?) + §Q(A1 - A?%). (4.21)
From this definition we see that our first building block has the BRST symmetry

Tlg + T21 =0. (422)

Now we seek to define higher rank building blocks, which we do by means of an inter-
mediary step. We first define Tmmp such that QT 12..p contains only Tis (1) instead of
Loi31...(p—1)1- Then we define T’ , by removing any BRST exact parts of Tlgmp. To keep
our definitions consistent we note that Ths = Tho.

We illustrate this process using the next rank. It is convenient to rewrite Loj3; (4.5)
to the form

L2131 = —L21<k'12 . A3> + ()\’)/mW3)<A7171(k?1 . A2> + Alnfgln — (Wl’}/mwz)) (423)
Then, using (4.10), this has the BRST transformation
QLo131 = =912(L31V2 — L32V1) + (s13 + 823)L21V3- (4.24)

We define T to obey this relation under the replacements L — T on the LHS and L — T
on the RHS:

QTlgg = 812(T13V2 — T23V1) + (813 + 523)T12V3. (425)
From (4.21) and (4.24) we see that
- 1 1
T123 — L2131 + 5512<D13V2 — D23V1) + 5(813 + 823)D12V3. (426)

Now all that remains is to find Ti23 by removing any BRST exact parts of Tios. Tt will
turn out that 7,3 has two such parts:

Thos + Tor3 = Q[D1a (k' - A%)] = QR (4.27)
T123 + T231 + T312 = Q[Dm(k’Q . A3) —+ Cy€11C(123)] = QR§22)3 (428)

Removing these parts gives us 7723, and the BRST symmetries that go with it:

~ 1 1 ~
T123 = T123 - §QR512)3 - gQREf%B = T123 - QS123 (4.29)
Thoz + To13 = 0 = Thoz + To31 + Ti12, (4.30)
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where we defined Sja3 = %R%)g + %R(éé to be the total piece to be removed. We observe
that our new rank-3 building block still has the old rank-2 BRST symmetry (4.22) in the
first two labels, and that we have gained an entirely new symmetry which uses all three
labels. This behaviour, as well as the method to identify the new BRST parts of higher
rank 7', can be explained by a diagrammatic interpretation of the building blocks. In
summary, we have succeeded (contingent on identifying the Rﬁan) in defining superfields
T's.., which have BRST symmetries in their labels, and which obey

p—1

QT p =T p-1)V? Z Sip + z}l—% 21 QT2 (p—1)(21) U (2p). (4.31)

Jj=1

A very useful method from [1] to identify all the BRST-exact pieces of R%)__p to remove

from T (or, equivalently, of identifying the BRST symmetries of the T') is a diagrammatic
representation of the T'. The key to identifying the building blocks as diagrams lies in the
Mandelstam content of their BRST variations. We have seen that

QT1> = Q12 = QLyp = s1,V'V? (4.32)
contains a factor of sj5. Furthermore, we can write (4.25) as
QT3 = QT123 = 519371,V — 512(T23V1 —T13V? + T12V3)> (4.33)

containing both s15 and s123 = 3 (k' + k% + k*)?. Looking at the general expression (4.31),
it is easy to convince one’s self that each higher rank (71, , will contain all the lower
rank Mandelstam invariants from QT (,—1), and can be written to include the newest
rank as well. We can even rewrite the general case to make this explicit:

p—1 k-1
QT12...p = SlQ...pTIQ..A(p—l)Vp - T12...(p—1)Vp Z Z Sk + lim ZplQle...(p—l)(Zl)Up(Zp)-
2 j=1 21—2p
(4.34)
This situation is displayed schematically in Fig. 4.1.
QT12 : 512 S
123
QT3 S13 + So3 51234
512345
QT34 S14 + So4 1+ S34 :
QT12345 S15 + S25 + S35 + S45

Figure 4.1: The BRST variation of higher order building blocks contains higher
order Mandelstam invariants and all lower orders.

At this point we can uniquely identify each T" with a series of labels and the Mandel-
stam invariants present in its BRST variation. These are exactly the features of a cubic
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< T123 \ | | | — T1234...p
Sz S123 /312 S123 S1234 - S12.p

1 1
(a) Our known example (b) The general case

Figure 4.2: BRST building blocks can be associated with cubic diagrams which
have the same indices and Mandelstam invariants.

Feynman-type diagram! If we denote an external leg with ingoing momentum k, simply
by the label p, then we can make the association of Fig. 4.2.

Now, we have already established that BRST symmetries of the building blocks are
encoded by permutations of their indices. What happens to the Mandelstam invariants
under these permutations? We can check our known case to gain some intuition:

QQTl[Qg] = —8123T23V1 —|— 823(T12V3 — T13V2 —|— TQng). (435)

The invariants are sjo3 and so3. What kind of a diagram has these invariants? Fig. 4.3a
does.

2 Sy3
< 2T \
S123 /312 e S0 Stk - S12.p

1 1
(a) Our known example (b) The general case

i | < 2T ik.p

Figure 4.3: Antisymmetrizing two labels.

In general, we can antisymmetrize two indices by connecting the corresponding branches
into a new vertex. If T\ ., — 11 .ijk]..p, this has the effect of changing s; ; — sj; in
the set of invariants, which matches up with the invariants of Fig. 4.3b. This can also be
done recursively, with multiple antisymmetrizations forming extra branches on the new
branch, as in Fig. 4.4b.

At this point, it seems like we have introduced an ambiguity into the notation. If
branches are to be antisymmetric, then Figs. 4.2a and 4.3a are the same, except that the
labels are permuted by 1 <+ 3. If we are to trust the diagrams, it seems that we must

have
Th93 = 2T5p1) = T321 — T312- (4.36)

But this is precisely the rank-3 BRST symmetry (4.30)! The rank-2 symmetry (4.22) can
also easily seen by considering Fig. 4.4a as either a tree or an antisymmetrizing branch,
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< 22T ijk.p

(a) A single antisymmetrization (b) The recursive behaviour

Figure 4.4: The branch: antisymmetrizing in general.

but this is a deeper property of the definition of the 7;; and as such is not multiplied by
an overall factor of 2.

Every diagram can be interpreted as either a simple tree or a branched one. Equating
the two yields the BRST symmetries of the T', or equivalently the BRST-exact combina-
tions of the 7. From this interpretation it is also clear that rank-p building blocks inherit
the p — 2 lower order symmetries in their first p — 1 labels, such that we can find R%)&“p,
¢ =1...p—1. We can make these different forms explicit by exchanging the two arms

of various branches, gaining a factor of —1 for each exchange. This is demonstrated for

rank 4 in Fig. 4.5.
\ | | < Tiozy = Thosa

& 2T < ATy

4

Figure 4.5: Various interpretations of the 7934 diagram. To get the bottom left
diagram from the top, we exchange legs 1 and 2, and then exchange [21] and 3.
For the bottom right diagram, we additionally exchange leg 4 and the unlabelled
leg.

In general, at rank p, changing the order of indices around the diagram from 123...p
to p...321 results in an overall sign of (—1)P~!, such that we always end up with order-p
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symmetries of the form
T12.‘.p + (—l)p Tp(p—l)...l +.--=0. (437)

Lower order symmetries inherited from the previous steps as usual. This relative sign
is most easily seen from diagrams of the form of Fig. 4.6. For example, at p = 2, the
symmetry is Tjo + (=1)2Ty; = 0. At p = 3 we have this same relation in the first two
indices, T123+7T513 = 0, but the new highest rank symmetry takes the form 793 — 27159 =
Tias + (—1)3 T591 +--- =0.

We can make this even more concrete by considering the next available example,
T34, and the diagrams in Fig. 4.5. We can interpret the diagram in four ways (the tree
and three branched interpretations), leading to three BRST symmetries. We obtain the
familiar rank-2 and rank-3 symmetries in the first 2 and 3 labels respectively, and also a
new symmetry in all 4 labels:

Tio31 + Tionza = Thosa + (—1)* Torza = 0 (4.38a)
T34 — 213104 = T1234 + (—1)® Tao14 + T3124 = 0 (4.38Db)
T34 + 4T y3p017) = Th234 + (—1)4 Tyszo1 + To1a3 + T3412 = 0. (4.38¢)
Equivalently, these are also the BRST exact combinations of T34, €. g.
Th234 — Thoas + Thrz — Tam = QR(&M- (4.39)

Should we so desire, we can at this point use our OPEs and SYM field equations to find
the explicit superfield representation of the R by brute force, secure in our knowledge
that this combination of 7" can be rewritten into the desired form.

For higher ranks, it is easier to see the highest order relation by putting the one open
leg as close to the middle of the diagram as possible, and considering either the top or
the bottom to be the antisymmetrization, as in Fig. 4.6. The lower order relations are
simply inherited, so it is most convenient to make the highest order symmetry the most
obvious.

< 2Tgpa) = —2Ty3p

1
2

< 2Th93p5) = 4T 543021))
3

[V, N N wro—

4

Figure 4.6: An easily generalizable way to find higher order BRST symmetries.
The diagram can be both from top to bottom, and from bottom to top, with
the second set of labels (consecutively) antisymmetrized in each case. The two
interpretations have a relative sign of (—1)P~! since we must exchange the legs of
p — 1 branches to reverse the label ordering, in accordance with (4.37).

From this form of the diagrams we can deduce the general form of the BRST symmetry
at rank p, with separate cases for even and odd p:

T2 rfr1].fp=21=1), ). ] T Lp(o=1)rtiprl321)..) =0, p=2r, r€Z (4.40a)
Th93. rt1fr+2L . fp—2{p—1), Pl 1| = 2L p(p=1)..o2fr+13021])..] = 0,  p=2r + 1. (4.40Db)
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4.3 Berends-Giele Currents

We now define the so-called supersymmetric Berends-Giele (BG) currents’ Mis..p, the
objects with which we can actually calculate amplitudes. As with previous superfields,
these objects are defined recursively:

p—1
E12...p = Z M12...ij+1...p7 QM12...p = E12..Ap, M, = v (4~41)

Jj=1

We see that as long as our SYM fields are on-shell, F; = QV'! = 0.
As with T, we examine the first few ranks to gain some intuition. At rank 2, we find

L T
QM12 — E12 — M1M2 - V1V2 — @ — Q 12, (442)

512 512

as we recall from (4.32). We are avoiding explicitly exact terms, so we choose

T
My = 2. (4.43)
S12
At rank 3, we get
Ty, V3 n V1T23‘

512 523

QMy23 = MyoMs + My Msg =

(4.44)

How do we find a solution for M here? We may begin by noticing that the combination
T12V? appears in the expression (4.33) for QT}3, repeated here for convenience:

QTlgg = 8123T12V3 — 812(T23V1 — T13V2 + T12V3). (445)

This is promising, since we intuitively expect higher ranked M to involve higher rank 7.
Using the BRST symmetry Ths = —T3 and noting that V! and Th3 anticommute, we
additionally note that

Q150 = 5123V T3 + 823(T12V3 —Ti3V? + T23V1)- (4.46)

It is then clear that

1 1 TL,V3 VT
—QT'23 + —QT321 = 5123 ( 2 4 23) ; (4.47)
512 5923 512 523
and so we can choose . T T
Mg = ( -2 4 321) : (4.48)
5123 S12 523

IThese are the supersymmetric analogues to colour ordered amplitudes with one off-shell leg considered
by Berends and Giele in [19] for computing QCD amplitudes. See [14], [20], or Chapter 4 of [1] for more
details.
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Mo S
S12
1
3
) 3
2 S
My < + <
S22 Si3
S123
1
1

Figure 4.7: The diagrams of the T appearing in the expressions for the lowest
order BG currents. The product of all s in each diagram is the denominator for
the respective T" in the sum.

This result may seem coincidental, but our graphical approach helps to elucidate the
pattern. The diagrams associated with My and Mjo3 are displayed in Fig. 4.7. In both
cases we have a sum over a complete set of independent (i.e. not related by a BRST
symmetry) rank-p diagrams, divided by all the Mandelstam invariants appearing in each
diagram.

This pattern holds true in general: at each rank p, M is the sum of all independent
rank-p building blocks, divided by all the Mandelstam invariants in their respective BRST
variations. The relative signs between the diagrams are fixed by our definition (4.41) of
M. Diagrammatically, we are summing over all tree diagrams respecting the label order
(including the one unlabelled leg) of the M in question, and dividing by the product of all s
in each diagram. The number? of such diagrams (rooted binary trees with unlabelled nodes
and labelled leaves) is (2p — 2)!/(p!(p — 1)!), as has been discussed in [7]. Comfortingly,
this is also the number of ways of placing pairs of brackets in a word of p letters, i.e. the
number of ways to antisymmetrize Tho3. .

Since we are summing over all the possible ordered diagrams, we will diagrammatically
represent the rank-p BG current as in Fig. 4.8. This also gives us an intuitive representa-
tion of F, the BRST variation of M. It is represented by the sum of all products of two
split pieces of of the M diagram which respect the label order.

Now, since we have established clear symmetry properties of T, we would hope that
these translate into symmetries of M. We begin by noticing that since My o< Ti9, we

2This is the (p+ 1) Catalan number; these number form sequence A000108 in the On-Line Encyclo-
pedia of Integer Sequences [21].
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Figure 4.8: The rank-p BG current diagram is the sum of all cubic diagrams
(corresponding to all antisymmetrizations of T2 ,), divided by the product of all
Mandelstam invariants appearing in each diagram. Its BRST variation is given by
the sum of all possible splittings of this diagram respecting the ordering.

have
My + M5 = 0. (4.49)

What about Mis37 Since it contains both 71723 and T391, and since the s are insensitive to
the order of their indices, we see immediately that

Mgz — Mso1 = 0. (4.50)

We can take this further without explicitly computing higher order M. Since we have
taken care to make sure M contains no explicit exact terms, its BRST variation £ must
have the same symmetry properties as M itself. Examining, we find

E1234 = M1M234+M12M34+M123M4 = _M432M1 _M43M21 _M4M321 = _E43217 (451)

implying
Migszq + Myza1 = 0. (4.52)

It seems as though we can generalize to

Miss 4+ (—1)PM, 2 = 0. (4.53)
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Let us assume that this is the case for rank p. Then at rank p 4 1,

P
Erg. pp1 = E Mus. i M1 pi1

7j=1
p .
=3 (=) (DU ()TN, M
7j=1
L Z Mysr.jniMj.on = = (1) Eppy o, (4.54)
j=1

so by induction we indeed have the reflection symmetry property (4.53). Furthermore,
the sum of all cyclic permutations ¢ of the E labels vanish since the M anticommute:

n—1
Z Ecr(123...n) = Z Z MU(lZ...pMpfl...n)

o p=1

- _ZZ Moo, pMp-1..n) + Mop—1..nMaa.. p)) =0. (4.55)

o p=1

4.3.1 Avym from BG Currents

The symmetry properties of the Mjs;.. bear a remarkable resemblance to the colour-
ordered (S)YM subamplitude symmetries from chapter 2, which had a reflection symmetry
(2.12) of the same form as (4.53). We do not prove this here as we maintain our focus
on string theory, but it was shown in [14] and also discussed in [1] that Ayy at N points
can in fact be written as

2
w

AYM(L 27 3a s 7N) = <E123...N71VN> <M12 ijJrl...NflVN)- (456)

J

[|
N

This equation gives us the subcyclic symmetry (2.13), and also the reflection symmetry
since F and V are both fermionic. The cyclicity (2.11) is slightly more involved to show,
but the basic idea is to use the BRST integration by parts procedure described section 3.3,
combined with that M;VJ = M;; = E;; to absorb the seemingly special leg V¥ into a
cyclically symmetric sum over M’s and E’s. Finally, it is worth making a quick note
about the seeming BRST triviality of the £ appearing in the amplitude. Until now, we
have been thinking of E93.; as the BRST variation of Mis3. ;. However, we have already

shown that )

5123...5

Mias. ; (4.57)

In the massless N-point case, 7 = N — 1. Conservation of momentum requires Sj3.;
(' 4+ k2 + -+ kN"12 = (kV)? = 0, and as such the object Mja3. n_1 cannot be con-
structed; it is forbidden by the kinematics. Thus Fio3. ny_1 is not itself a BRST variation
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of any object at N points, but rather a full-fledged member of the cohomology of ). Of
course it is still closed, and we also have QV = 0 for on-shell SYM fields, so the whole
amplitude is BRST invariant as required. The amplitude in terms of momenta and po-
larizations for gluons and gluinos can be obtained using the component expansion (2.9).
Since this process can be very lengthy, a FORM package named PSS has been developed
and published in [22] to aid in calculations.

In calculations to come, we will make use of this expression for Avy, but for our
purposes it will be sufficient to consider it as a shorthand for the correlator (4.56). For
completeness, we can diagrammatically represent this amplitude using our established
notation and in keeping with [14] as in Fig. 4.9.

Figure 4.9: We can diagrammatically represent AYM by connecting the two off-
shell legs of the Eyo n_; diagram with a V'V operator.
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5 Tree-Level Amplitude
Construction

Recall that the colour ordered tree-level N-point amplitude in the pure spinor formalism
is given by

A(1,2,...,N) = /dz2 o day_ (VHO)VY L)V Y (00)U? (22)UP (25) - - UN 2 (2n-2))

(5.1)
where the integration region 0 = 21 < 29 < 23 < ... < zy_9 < zy_1 = 1 determines the
colour ordering 123 ... N. It is immediately clear that the 3-point amplitude is given by

A(1,2,3) = (VIVEV?) (5.2)

which can be written in terms of momenta and polarizations using the component expan-
sion (2.9) and picking out the relevant terms using the correlator. The 4-point case is
slightly more involved, but 5 points is where the real subtlety of the task starts coming
into play.

In the following, we will demonstrate our techniques on the 4-point case, extend to
5 points, and then present the general case. First we will introduce some condensed
notation to maximize our efficiency in computations, and then we will calculate the desired
amplitudes in detail. The general procedure is as follows: first we write the correlator in
terms of a combination of various L by taking various OPEs between the unintegrated
vertex operator(s), V1, and V=1, Next, we rewrite these in terms of building blocks, and
then in terms of BG currents. Finally, we perform an integration by parts procedure to
factor all explicit z and s dependence, and combine all the correlators into one compact
expression.

5.1 Notation Condensation

As is often necessary when computing amplitudes, we will condense our notation to avoid
clutter. We will call the amplitude in the canonical colour ordering 123... N Ay =
A(1,2,...,N).

We will abuse our existing notation somewhat by implicitly factoring out the X™
dependence of the vertex operators. From the SYM component expansions, and noting
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that both V' and each term in U contains exactly one SYM field, we see that the vertex
operators can be written as

VI(X(z),0(z)) = ¥ XVi0),  UI(X,0) =" *Ui(0). (5.3)

As we know from open bosonic string theory (see e.g. chapter 6 of [8] for an overview),
which has the same OPE between two X as in our case,

N N
<H€i(kj.X(zj))> x 5D<ij) HH B
j=1 j

=1 i<j

(5.4)

In our case, we change the sign of the s;; in the power of |z;;| because we are absorbing
the factor of 7 into our momenta!, such that 9,, <+ k,, instead of 9,, < ik,,.

So in our case the X dependent factors carry explicit z dependence, which we are
interested in. As such, we will often factor this dependence out (and drop the overall
momentum conservation Dirac delta, which is implied). However, we will continue to just
call the relevant vertex operators V'(z;) and U’(z;), in keeping with the notation of [1].
That this factorization has taken place will be implied by the presence of the explicit
product of z;; in the integrals:

N-2
A =T [ dee Tl ooy vvews..ov-s), (5:5)
=2

1<j

Where the meaning is clear, we will replace the cumbersome integration factor simply by
an integral sign:

N-2
/<VllevNU2U3 . UN72> = H /dZ@ H ’Zij‘isij <VlvalvNU2U3 L UN72>'
=2 i<j
(5.6)
Now, since the vertex operator V¥ is inserted infinitely far away from the others, it
will often play no role in the computation of the correlators. To simplify the notation and
prevent having to carry non-participatory factors of V¥ throughout entire calculations,
we will denote this final vertex operator with a subscript on the correlator brackets:

(VIWWVNAIRUE . UNTE y = (VIVITIDRUR L UN T2 U (o = 00). (5.7)

Because QV = 0, BRST integration by parts functions in the same way for () 5 correlators
as it would if the V' was included explicitly.

Putting everything together, we can more conveniently write the full N-point ampli-
tude as

Ay = /(le2 cL NNy (5.8)

IThis difference was pointed out in [5].
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5.2 Manipulating the Kinematic Integrals

The various integrals involved in constructing the tree-level amplitude have been examined
in significant detail in [7]; here we will extract only what is needed for our computation.
We have many integrals containing the product of |z;|~*% for ¢ < j. In the canonical
colour ordering, z; < 211, S0 |2;;| = —z;; = zj;. Let us assume this colour ordering for
the remainder of the section.

The key to manipulating the integrals with kinematic factors is an integration by parts
procedure, where we assume vanishing boundary terms. We first note that

N—-2 a
0=—/I£d2f37 L el == /Hdea—kz (230) ™

1<i<j<N-1 <j
N-1
Skm Skm Smk
- [T It [ 32 /Hdelzw(Z Sy )
zZ z
1<j m=1 km 1<j m<k km m>k Zmk
m#k

(5.9)

This is already a useful expression for swapping out kinematic factors in sums of single
pole integrals, but we would like to also include arbitrary z in the denominator. Let us
require that all additional factors of z be ordered z,,, for m > n, to match the final form
of the above equation. Then we can add in these factors simply by shifting the relevant

Sji-

[ 1=l S” o [ C) 2, (5.10)

1<J 1<j
SO

—5ji

/N—2 P 24|
_ Hng—Hﬂ—
Oz ++ (25"t
(=2 1<)
= [T [Tl (3t o ) sy
= Ze | (ZZ)TLJL Zkm o |
=2 i<j VY

z
m<k m>k mk

We can write this in a simpler form assuming that all n,,, and ng,, are zero, i.e. the
differentiation variable appears only in the Veneziano factor [[|z;|~*4:

N-1

|Z |Z 8 Sk
i Ji m
||d@ iz Ild 2 E — |, Nk =ngm =0V m.
8zk (i) 2ji )i ! Zkm
1<J m=
m;ﬁk

(5.12)
Let’s apply these formulae to the 5-point amplitude. For example, the Lo33; term in
(VIU2U3V*) (see (5.31)) has a denominator of the form 1/29323; = —1/232231. Choosing
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ns; = 1 and k = 2 allows us to use the simple form (5.12), giving the result

.. 1 Logz V* s L (821 Su
—L2331V4/d2’2d23 H |ZZJ| v = — dZQng H |ZZ]| ”Z_ — + — .

i<j 231732 532 i<j 31 \?21  ~24
(5.13)
The more general case can be exploited to rewrite the double pole term of the same
correlator, which is proportional to (1 + s33)/(232)?. Choosing nzz = 1 and k = 3, we can
rewrite:

1 1 1
/ dzadzy H|zijy—swz—ﬂ S / deadzy [ 2l ™0 — (@ - &ﬁ) . (5.14)
32

z Z zZ
i<j 32 31 43

Integrating by parts combined with the use of the easily proven partial fraction identity

1 1 1
= (5.15)

Zjilki ZikZji ZikRki

gives us significant flexibility in rearranging the integrals appearing in amplitudes.

5.3 Correlators from Building Blocks

The correlator appearing in the four-point amplitude is (V*U?V2V4). We have not written
down the integrals or positions of the vertex operators, but we use the SL(2, R) invariance
of the worldsheet to put V* (or V¥ in general) infinitely far away, so we can neglect any
OPEs involving this operator. However, we do end up with terms involving OPEs between
the rest of the operators. Recalling that the V' are fermionic and U is bosonic, we have

[ L V3V4 VlL 4
(V) U (2)V3(23)VH(z)) = (VIUPVAVY) — <21—> + <¢V> . (5.16)
L 221 223
Now, to move on to using the building blocks, we note that T, differs from Lo; only by
the BRST exact term QD15 = 5Q(A" - A?). As such, we can write
1
(Loy VAV = (T, V3V — 5((QD12)V3V4>. (5.17)

The BRST operator @) acts like a differential operator, and QV = 0. Since BRST exact
terms decouple, we get

<(QD12)V3V4> = <Q<D12V3V4)> =0, (5-18)
and doing the same for the Log term gives

Ty, V3V4 > N < VI3 V4 >

223

(VIUAV3VY) — < (5.19)

221
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so we have achieved our goal fairly straightforwardly.
At 5 points, the situation becomes messier. This is mostly due to terms arising from
the OPE of two integrated vertex operators. From (A.3), we can write this as

1
lim U?(2)U%(z3) = — [(W’y, W?)(II™ 4 k22N™™) — N™ F> PF?

22—23 293

HAZ (W3 00) + (k2 - TI) (A*W2) + (A% - KU — (2 < 3)]]

1
S [2(AOW) — (40 42)
23
1 1
=y T 8pm (5.20)
<23 <23

We have a set of single poles (o< z;;') and additionally a set of double poles (x z;%).

Let us first focus on the single poles. We expect that the physics should not be
affected by the order in which we carry out OPEs between the various vertex operators.
For example, the sequence beginning with U2,

VAU (20U () — WUV U) | V) (UPUD)(z) - oy

221 223

should yield equivalent results to the sequence beginning with U3,

Vl(zl)U2(ZQ)U3(23) N (V1U3)<Zl> U2<Z2) + Vl(’Zl) (U3U2)(Z2) (522)

Now, of course, we can express these OPEs in terms of our known L. Hearkening back to
the generalized notation introduced in (4.2), we write

L L
(5.21) — 2131 + 2331 (5.23)
221731 223231

and I I
(5.22) — 2L 4 8221 (5.24)
Z31%21  R32%21
Setting these two expressions equal to each other will give us a relation between the

various L. But first, we note that we can Taylor expand the UU single poles

Y32 Y32
(22) =— (23) + regular, (5.25)
232 223

implying that
L3921 = —Lass1. (5.26)

Using this and equating our two expressions, we find that

L3121 - L2131 _ L2331 ( 1 o 1 ) _ L2331 (5 27)

)
221231 223231 223221 221731
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where after the second equality we used the partial fraction relation (5.15). So
Log31 = L3ia1 — Loz = 2 L3y 213 (5.28)

This identity can also be checked explicitly from the superfield expressions of the L, as
has been done in appendix A of [5]. This result generalizes to higher ranks:

293234741 hm Vl (21)U2<22)U3(23>U4(Z4) — L233441 = 22 L[417[31721]] (529)

29232421

Lossass...(p—1yppt = 2772 Lipt [(p—1)1,[...(31,21]...]]]- (5.30)

At this point we can include the double poles of U2U? in our considerations by writing
the full correlator including V4 (and V®). Continuing to use the generalized L, we can
write

2[/[31,21]‘/4 n Loz V* n Loy L3y n 11+ 593

3
293231 291231 291234 2 Z3

_ <L2131V4 n Loy L3y I V1 Lssoq I 11 + S23

(VIUPUPVY) 5 — < PREVIVY - (1« 4)>

5

2
212723 212743 243232 2 233

PEVIVI 4+ (2 & 3)> :
5
(5.31)

In the second line we used the partial fraction relation to regroup the rank-4 L terms into
a 2-3 symmetric form, or equivalently considered only the OPE orders beginning with 2o
and then took care of those beginning with z3 in the (2 <+ 3). We can rewrite the product
of rank-2 L in terms of building blocks fairly simply:

(Lo1Lsa)s = ((Th2 — %QD12)(T43 - %QD34)>5

= (TTi)s — 5(Te(QDss))s — 5((@QDis)Tis)s

1 1
= <T12T43>5 — 5812 <V1V2D34>5 + 5334<D12V4V3)5. (532)

Here we BRST integrated by parts, used the T" transformation property (4.31), and used
our notation D;; = A"+ A7. Note that we ended up with terms of opposite sign due to the
opposite ordering of the 7" and D in the two remainder terms? (see (3.41)). To rewrite
the other terms, we recall that

- 1 1

Tho3 = Lojz1 + 5812(1)13‘/2 - D23V1) + 5(6’13 + 823)D12V3, (5.33)
and so ] 1

Tz = Lzaos + 5343(D42V3 — D32V4) + 5(842 + 832)D43V2' (5.34)

2Thank you to Joe Minahan and Thales Azevedo for discussions on this point.
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Since the rank-3 L only appear multiplied by unintegrated vertex operators, and since T
and T differ only by BRST exact terms, we can make the replacement L — T and then
immediately replace 7' — T'. We get

CTI23‘/4 + T12T43 + V1T432

212223 2127243 243732

(VIUPUPVY) s — < + (2 + 3)> + (Rs)s (5.35)

where we defined Rs to be the remainder terms resulting from the L — T exchange, plus
the double pole term:

Rs

1 {812(D13V2 - D23V1)V4 i (313 + 523)D12V3V4 4 512V1V2D34

2 212793 2127293 2127243

_ 834D12V4V3 + 343V1(D42V3 - D32V4) + V1(342 + 532)D43V2

2127243 243232 243232
1+
S EPBYIV 4 (24 3)]

233

1
— _5 [D12v3v4 ( 513 4 S13 + So3 n S43 )

213232 212723 212743

S S S43 + S
31,1 13 43 43 23
— DpV3V < + +

213242 243232 242293

i 1D Vvt ( S12 543 513 S42 )
— Doy _ _ _ _

2 212793 243732 213732 42793

1+s
—— B PEYIVA L (2 & 3)] . (5.36)
<23
Note that in the last line, the factor of 1/2 on the Dag term appeared to compensate for
symmetrizing the term with respect to 2-3.
Now, since our goal is to write (VIU2U?V*)5 in terms of building blocks, we would
like this remainder to vanish. Of course, in the end it is not the correlator itself we would
like to rewrite, but the amplitude. So we are actually trying to ascertain whether

/dZQng H |Zij|_sij <R5>5 ; 0. (537)
1<j

This leaves us free to use our integral machinery from the previous section. Beginning
with the first term, we can ignore the D and V factors since they are not integrated over.
We are left with only the integral of the various s/z terms, which is promising. Now,
using the partial fraction relation and the simple integration by parts (5.12) with k = 3,

_s. [ S13 S13 + 523 1 1 523
/d22d23 H ‘ZU’ ’ (213232 * 212223 ) B / (812 <Z13232 * 212223) * 212223)
i<j
1 /s S S
:/_(ﬂ+£>:_/ B (5.38)
291 \ %231 232 212243
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So the D15 term vanishes! The second term, proportional to Do, has the exact same form
as the first, just with 1 — 4 and the opposite sign. So it too vanishes, leaving us only
with the Doz and double pole terms. To treat the Dy term we use the full integration by
parts formula (5.11) with both £ =3 and k = 2:

/(_ S12 -S43 813 S42 >_/( 1 (831_843)_ 1 (821_842))
2127223 243232 213%32 242293 232 \ ?31 243 232 \ 221 242

Now, P% = 2(ACW?) — Dy, so we have

1 1
/d22d23 H |zij|_5ij <R5>5 =3 / Rk (D23V Ly 4 pByt V4)

i<j 2 (225)?
1
- / (;3“;3 (ACT VYA, (5.40)

This term is in fact exactly cancelled by the BRST exact term which we dropped from
the rank-2 L and its descendent terms which would have appeared in the rank-3 L had
we not dropped it. We did not include it so as to preserve the useful transformation
properties of the L and T. However, carrying these terms along separately, we find that
they produce terms of the form (A*W7) multiplied by sums of s, which vanish as a result
of momentum conservation. The details of this cancellation are given in [5]. Of course,
we could already have known that these double poles would cancel, since their presence
would indicate tachyons in the spectrum, which we do not have in superstring theory. So
we are finally left with the confirmation of (5.37), that indeed

/dZQng H |Zij’78ij <R5>5 = 0. (541)
i<j
We have confirmed that we can rewrite
m:/wme%
. / <L2131V4 n Loy L3y n V1 Layo4 41 11+ 823P23V VA4 L26 3)>

212223 212743 243232 2 223
4 1
/<T123V 4 T19Ty3 4 ViTyso

212723 212743 243232

5

+ (2 3)> . (5.42)

Taking the natural extension 7; = L; = V*, we can write this result as

As = /Z<T12 2113..p41 7?(2,3)> : (5.43)

212...pR43...p+1 5
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where P(2,3) is denotes terms with the other permutation of (2,3), and 293, is the
consecutive pairwise differences of z with the order of the labels:

Zijkl..MN = ZijZjk%Zke " " ZMN - (5-44)

This form is unnecessarily cumbersome at 5 points, but has the obvious generalization

Ths..,T.
AN=/<V1U2U3---UN‘2VN Y /Z< = B LT S ”“+7)(2,...,N—2)> .
N

212..p RN—1,N—2,....p+1

(5.45)
The general result is the product of a similar process: we take all the relevant OPE orders,
rewrite in terms of building blocks, and the remainder is cancelled by the higher order
poles resulting from OPEs between pairs of integrated vertex operators.

5.4 Substituting BG Currents and Avwu

At this point we have our amplitude as a sum over terms of the form (I'TV). Recalling
section 4.3.1, the YM subamplitude is a sum over terms of the form (MMV'). Since
the M are defined in terms of T" and various Mandelstam invariants, it is reasonable to
expect that we can simplify further by rewriting our current expression in terms of M
and eventually Ayy. This is also a promising form for the transfer of knowledge between
SYM and string theory.

We will now work at the level of the full amplitude, not just the correlator, as we will
be making use of the integral machinery of section 5.2. As we have come to expect, the
4-point case is very simple. We have seen already in (5.19) that only the rank-2 building
blocks appear in the amplitude. Recalling section 4.3, we can simply write V* = M; and
ﬂj = SijMiju SO we get

S TRVAVE VT,V
A4:/d22H‘Zij‘|_S”< 2 + 2 >:/<S21M12M3V4+2M1M23V >

i<j 221 232 22 z3
(5.46)
At 4 points,
/dZQ H ’Z’L] |_SZ] /d22 H |Zz] |_S” (547)
1<j 1<j
SO

Ay = /% <(M12M3 + M1M23)V4> = <E123V4> / i—zi

221

— Ayni(1,2,3,4) /dz2H|z”|—Sw2 (5.48)

<]

Again the 5-point case is trickier. For ranks higher than 2, the BG currents are written
in terms of several independent T' (a complete set of them at the given rank, in fact), so
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there is not a simple one-to-one correspondence like in the 4-point case. Fortunately, the
permutation sum allows for a rewriting. Using the partial fraction relation, the BRST
symmetries of T;;;, (4.30), and the expression of M,jj, in terms of 17" (4.48), one can check

that
512

() = 12 (1242 gy 4 P23 (5.49)

212723 212 \?13 %23
One way to prove this is by multiplying the left side by 1 = (s12 + S23 + S13)/S123,
grouping terms using Ts91 = Ti23 — 1132, adding 0 = s12513(T321 + To31)/ 212213523, and
finally substituting in the expression for M. Note that this holds only when including the
permutation sum!
Combining with our expression for the rank-2 M, we have

TiosV'VP  TuTV® VTV
A5—/dz2d23H|zij|_s”< = e = +7>(2,3)>

- 212723 212743 243232
1<

B / <g (E " %) MoV + P12t Mo Mys

212 \ %13 223 212743

—l—% (&ﬁ + @> VM, + P(2, 3)>

243 \ %42 232

5

S1o S S198 S43 S
— / <£i4M123V4 + 2B Mg + 22 2LV Mgy + 73(273)>

212 234 212743 243 221 5

= / <812S34 (Mia3V* — MyoMys + V' Myss) + P(2, 3)> : (5.50)

212234 5

After integrating by parts, we find that all the terms within a given permutation end up
over a common denominator! Furthermore, the resulting combination (between round
brackets above) looks suspiciously like a Yang-Mills amplitude. Recall that the BG cur-
rents have the reflection symmetry (4.53) in their labels, resulting in an overall sign of
(—1)P~! at rank p. This allows us to finally rewrite Ajs into the desired form:

(Mig3My + MigMsy + My Mozy), = <E1234V5> = Aym(1,2,3,4,5) (5.51)

and so

A(1,2,3,4,5) :AYM(1,2,3,4,5)/dz2dz3H|z2-j|—sw% + PR2,3). (552

i< 212734
It is tempting at this point to generalize to Ay, n f812823834 «++ /219293234 + - -+, but the
explicit analysis of the 6-point amplitude in [1, 6] shows that this would be premature.
The general case requires a more careful treatment of the BG currents and the integration
by parts.

Higher rank BG currents have been explicitly computed in the appendix of [1]. Using
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these, or applying the diagrammatic method, we can check that

T S s S S S S
2 L P(2,3,4) =2 (i” + ﬁ) (ﬁ + =4 34) Mgz +P(2,3,4)

21234 212 \ %13 223 214 224 234
4 k—1
Smk
=TT D= | Mizsu+P(2,3,4). (5.53)
k2 \ 1 ~mk

This gives us the appropriate generalization:

T p k—1 .
22y p(1,2,3,. . p) =[] (Z ° ’“) M p+P(1,2,3,...,p). (5.54)

z z
123...p =2 m—1 mk

Terms of this form will be multiplying their counterparts in (5.45), which are of the form

N-2 -

Thn_1n— Skm

N-1,N 2""’p+1+73(p+1,.. H Z k—MN LoptitP(p+1,...,N=2).
ZN-1,N-2,...p+1 k=p+1m= k+1 kem

(5.55)
The BG current in question is of rank-N — p — 2, so reflecting the labels gives an overall
sign of (—1)¥~?=3. The product contains N — p — 3 factors of zj,, so reversing these to
zmk Will cancel the sign. Then we can write

N-2 N-—
Tn_1n- Smk
NN iy N2 = T[S S Myt P L N—2)
EN—1,N—2,..p+1 k=p+1m=k+1 “mk
(5.56)
In the amplitude, we have terms of the form
Tio. ) Tn_1N—
2. pINUN 2wt pio N 9). (5.57)

212..p RN—1,N—2,...p+1

Each T' — M replacement involves only the permutations of that building block’s own
labels, and we are summing over all permutations of all the labels 2... N — 2. Thus for
each set of labels 1...p, we sum over all permutations of p+ 1... N — 2, and vice versa
(and also the same for all the other permutations). So despite our terms containing a
product of two building blocks, the overall permutation sum guarantees that we can make
the double replacement T — M M.

How do the kinematic factors resulting from the replacement behave when combined?
Consider a kinematic integral like the one appearing in (5.54), with p = N — 2:

N—-2 k-1 s
mk
H sl T
1<j k=2 m= 1
S12 (513 523 S14 524 534 S1,N—2 S2, N—2 SN—3,N—2
= — [ =4+ = — 4+ =4+ = ’ + = 44— )
/ 212 \ %13 223 214 224 234 Z1,N—-2 22, N—2 ZN—-3,N—2

(5.58)
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All the denominators z;; are unique, meaning we are free to use the simple integration by
parts to change the contents of any of the factors:

P D DD P (5.59)

Z z
m<k ~™Mk m>k Mk m>k Zlem

Suppose we make this exchange for every factor where k& > p for some p. Then (5.58)
becomes

S12 [ S13 | S23 Sip Sp—1,p Sp+ip+2 | Sp+lp+3 Sp+1,N-1
212 \ %13 <23 A1p Zp—1,p Zp+1p+2  Rp+l,p+3 Zp+1,N—1
SN—3,N—2 SN—-3,N—1\ SN—2 N—1
NERE +
ZN—-3,N—2 ZN-3,N—1/ ZN—-2,N—1

/H< S:Z> ]ﬁz (Ni %) (5.60)

m=1 l=p+1 \n=(+1

These two factors are exactly the kinematic factors accompanying the BG currents Mio3..
and M4, n—1 after replacing the building blocks! So we find that even in the general
case (5.45), after replacing TT — MM, all the terms (at various p) within a given
permutation end up with a common kinematic factor after integrating by parts. Using
this result to transform the N-point amplitude (5.45), we finally find:

Ty, T,
AN—/Z< S — ”’“> +P(2,3,...,N—2)
N

212..pZN—1,N-2,....p+1

p=1
N—-2 p s N—-2 N-1 s
SIS T (52 22) e st v} v
“mk l=p+1 \n=(+1 “n N
N-2 —1 S
<ZM121) p+1,... . N— 1V >/ ( 2k>+P<2,,N—2)
m—1 mk
N-2 N—-2 k—1 s
— | = Sij omk _
Ay = Aw(1,2,...N) [] / dng 2 D -~ +P(2,...,N—2). (5.61)
£:22e<ze+1 1<j k=2 m=1

5.5 Concluding Remarks

In this thesis we have reviewed the computation of the full N-point tree-level colour or-
dered open superstring amplitude using the Pure Spinor formalism and the calculational
methods developed throughout [1, 3-7]. We focused on the technical details of the cal-
culation, forgoing the kind of detailed analysis performed in [7]. In that paper, Mafra,
Schlotterer, and Stieberger use integral techniques similar to those in section 5.2 to es-
tablish a basis for the kinematic integrals appearing in the N-point amplitude, drawing
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from a range of areas of mathematics. They find that such a basis is a valuable tool for
studying a duality between colour and kinematics, which is known from field theory. Such
a duality is made possible by various relations between subamplitudes which reduce the
total number of independent subamplitudes down to the same number as the size of the
basis of kinematic factors, as was discovered in [12].

Our focus on the tree-level also excluded the more recent one-loop analysis from our
scope; this work has been performed in [20]. Similarly, our purely massless considerations
could in principle be extended to include the first level, the vertex operators for which
were introduced in [23]. Since these vertex operators contain many more terms than
their massless counterparts considered in this thesis, some sort of computational algebra
handling would be of great benefit in performing this calculation.
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A Some Explicit OPEs

Some of the OPEs in this work were carried out using a Python script due to the large
number of terms involved. The output of some of these calculations is reproduced here
for reference purposes. This output was then simplified by hand using the SYM field
equations and other identities, in particular the gamma matrix identity (mentioned in
[5)

(7" Ypg) = —326," (A1)
or with the help of the GAMMA package for Mathematica, published in [24].

For two integrated vertex operators, the script gives us

lim U?(29)U?(23) =

Z3—22

1
lim (00“A2 + A2 I + d,W?>* + 5Jvmjﬁmn)(,z«Z) .

Z3—22
1
X (007 A% + ASTIP + dgW?7 + §Npq]:3pq)(z3)
07 AL RAMAZ  AZWORGE 99U WD,AR

(23 — 22) (23 — 22)? (23 — 22)
k3mAS A2 007  prm A2 A3 M A3 A2 T
(22 - 23) (22 - 23)2 (22 - 23)
CIARRRAZ | ESTARRRRAZ EPTWAPALd,
(23 - 22) (22 - 23)(23 - 22) (22 - 23)
ALWEINR 00 TImWSP D A2 N K3mMW3P Dy A%
(23 - 22) (2’3 - 2'2) (Z2 - 23)(23 - 22)
1ES™mFS A2 NPm o GgW2eAY D ASW?2200°
2 (22 — 23) (ZQ — 23)2 (2’2 — 23)
fygﬁaQﬁWQ CVAZ DQA% W2em daA% E2nyy2e
(22 — 23) (20 — 23) (23 — 22)
DaA%k2 nw2a 'YmaﬁHmW2 aw3,8 DaW3 Bw2 adﬁ
(22 — 23)(23 — 22) (22 — 23) (22 — 23)
daW3BD5W2a DQW?’ﬁDﬁWQa 1 Da]-";’nWZQNp”
(23 - 22) (22 — Zg)(Zg — 22) 2 (ZQ — 23)
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LN AR PFL, LN™W3PDgF2 - 11F5, N"n"F,
2 (Zg — 22) 2 (23 — 22) 22 (ZQ — 23)
LR N E L LFR NI ED 11 FR N,
22 (Zg — 23) 22 (22 — 23) 22 (ZQ — 2’3)
11, F2,0"P ™ Fs, 11, F2, "™ FS
AL ST g i3 " g (A.2)
22 (ZQ — 23)2 22 (22 - Z3)2

By hand, we can simplify this output to

1
U*(22)U%(23) = — [(W?WP)(IT™ + k22N™™) — N™ F? PF2

232
+[AS (W?y™00) + (k* - IN)(A*W?) + (A - B°)U® — (2 4 3)]]
1 + 593
o (AT 4 (W) — (42 A7)
= Lyn 1% 50 pn (A3)
232 239
Similarly, we can compute e.g.
Vi) (UU°)(23)
)\A/kSmA3A2 klnAl )\7A3k31m141k32n142
N n‘ m ¥ n ¥ m
(2’2 - 23)(23 - 21) (2’3 - 22)(23 - 21)
NESMWBEP A2 Dg AL NW3PEImAL Dy A2
(22 - 23)(23 - 21) (2’3 - 22)(23 - Zl)
11 ALK FS AZrmiNe \YD, A3kt AL
22 (22 — 23)(23 — 21) (22 - 23)(23 - Zl)
A”AiDaA}YkQ”WQO‘ AWWmaﬁWQlemA,l},WS’B
(23 - 22)(23 - 21) (22 - 23)(2’3 - Z1)
N D W3W2eDg AL NW3P D, AL DyW2e
+
(22 - 23)(23 - Zl) (23 - 22)(23 - 2’1)
11 AL Do F3 W2 oyg NP 11 AL BN R2PFR
2 2 (22 — 23)(23 — Zl) 2 2 (23 — ZQ)(Zg — 21>
L1 AW PN Dyl 111 AT e N,
22 (2’3—22)(23—2’1) 222 (22—23)(2’3—21)
111 AT e A F 111 A Fr ™ e ATy,
222 (23— z3)(23 — 21) 222 (z3— z3)(23 — 21)
111 A Tan™ e X Fy
222 (22—23)(23—2’1)
_ Loss: (A.4)
223231
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using the output of the U?U? calculation directly, or

Vi(21) (UPU°)(23)
_ )\awz%?’mvﬁwg'ﬁklmAé o lA}xWQ’Y'Vmﬂ/ﬂwiwkrsz?ma)‘é

~ (20 — 23)(23 — 21) 2 (20 — 23)(23 — 21)
1AL 2 s WBkB qmars 1 ALF2 ymne\fFS
2 (22 — 23)(23 — 21) 2 (20 — 23)(23 — 21)
MW2eD, A3 KtmAL  NW?2eD W38 Dy Al
(22 — 23)(23 — 21) (22 — 23)(23 — 21)
NAZ E3mAS T Aj N NAZ W3 D, A}
(22 — 23)(23 — 21) (22 — 23)(23 — 21)
11 A} A% k3 mF;’nfyg"‘SAa NW3eD, A3 ktm AL
22 (20— 23)(23 — 21) (29 — 23)(23 — 21)
MW DLW DAL N ALK ALK A
(2’2 - 23)(23 - 21) (Zz - 23)(23 - 21)
NAS E2mw2eD AL 11 AjASK? mfgnqgmw
(29 — 23)(23 — 21) 22 (20 — 23)(23 — 21)
_ L33 (A.5)
223731

using the simplified expression (A.3) for U?U3.
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